Transport of Surgical Neonates

Don Moores, MD
Overview

- General Comments
 - Rationale for transport of surgical neonates
 - A bit of history
 - General principles
 - Mode of transport
 - Effect of altitude
 - A few comments about tubes

- Specific Surgical Diagnoses
 - EATEF
 - CDH
 - Gastrochisis
 - Omphalocele
 - NEC
 - Intestinal atresia
 - Malrotation / Volvulus
Surgical Neonates

- Considerably less common than medical
- Pediatric Surgeons – limited resource, usually based at specialty centers
- Transport to regional centers – established practice
- Ensures that patients benefit from the most expert care available
- Prenatal diagnosis of surgical conditions allows “fetal transport” in-utero
- Still a need for post-natal transport
“Transportation”

- Word dates back to 6th century BC
- From Latin
 - “portare” (to carry)
 - “trans-” (across)
- In context of patient care
 - “to carry the patient to a nursing entity”
First Reported Neonatal Transportation

- In Greek Mythology
- Dionysus (ie Bacchus)
 - God of the grape harvest, winemaking and wine, ritual madness, fertility, theatre and religious ecstasy
- Born prematurely at 8 mo
- Needed special care
First Reported Neonatal Transportation

- Mercury (Hermes) carried Dionysus to Mount Nyssa
- Cared for by Nymphs
- Placed in a cave (incubator)
- Entrance covered by a dense ivy curtain (cover from air currents)
-and pines (air filter)
- Dome covered w/ vine branches (maintaining stable environmental temperature)
Dionysus
History

- Hippocrates – 5th century BC recognized the special needs of neonates
- Prior to late 1880’s there was no special care for neonates
- Home delivery was standard
- Preterm or sick neonates often died (or worse)
- Orphanages were only institutions for neonatal care (mortality 85-95%)
History

- Industrial revolution 1790-1840’s
- More women working
- More use of “formula”
- Mortality rates ↑ up to 23%
- ↓ Birth rates
- Founding of Infant Welfare Movement (IWM)

Causes of Death

- ‘Non-Preventable” causes of death:
 - A = Prematurity
 - B = Wasting

- ‘Preventable” causes of death:
 - C = Diarrhoea
 - D = Acute pulmonary diseases
 - E = Convulsions
 - F = Acute infectious fevers
 - G = Tuberculosis
 - H = Meningitis (non-tuberculous)
 - I = Syphilis
 - J = Rickets
 - K = Other causes

Birth rates
- 1834 – first neonatal endotracheal intubation
- 1853 – establishment of children’s hosp’s London, NY and Philadelphia
- 1878 – invention of the incubator – (Taurnier - France) - decreased mortality rate by 42% for infants <2000 gm
- 1891 – first use of supplemental oxygen for neonates
History

- 1903 – Dr. Joseph DeLee, Chicago - First portable transportation incubator (Chicago World’s Fair)
- “Smallest Ambulance in the World” (aka “hand ambulance”)
- Temperature controlled (cans of hot water)
- Battery powered light – illuminated patient and thermometer

Figure 4: The Smallest Ambulance in the World (From the Neoplasm, 1903). Available at: The Pediatric Clinics of North America/Transport Medicine/April 1993.
History

- Dr. John Hess – 1914 designed a simple portable incubator that was commercially available and made transportation practical
- 24x15x17inch box w/ access ports for oxygen and a window for ventilation
History

Taxi used as ambulance w/ public health nurse, c1920

Neonate being carried to the hospital, Chicago, c1920’s
We’ve come a long way, eh?
General Principles

• Initial Referral of Surgical Neonate
 • Collect information (age, gestation, birthweight, suspected surgical condition, resp status, fluid management, medications)
 • Ascertain urgency of transport request

• At the referring hospital
 • Confirm history and any changes in condition
 • Confirm stability - (BP, temp, glucose, CXR)
 • Ensure reliable IV access
 • Secure airway if any resp issues or potential issues
 • Functioning NG or OG tube
 • Collect all Xray’s
Modes of Transport

- Ground ambulance
 - Most common, good for short distances
 - Come w/ power and oxygen supplies

- Fixed wing
 - Preferable for long distances
 - Requires transfer to and from airport
 - Adds time and number of transfers
 - May not have built in oxygen supply

- Helicopter
 - Can transport directly to/from hospital
 - Noisy, can be cramped
Effect of Altitude

- Pressure and volume of a gas are inversely proportional
- ▲ Elevation
- ▼ Atmospheric pressure
- ▲ Expansion of gas
- ▼ Ambient oxygen tension

\[P \propto \frac{1}{V} \]
Effect of Altitude – O2

- Sea Level
 - Elevation 0’, 760 mmHg
 - Oxygen 156 mmHg

- Big Bear, CA
 - Elevation 6752’, 600 mmHg
 - Oxygen 126 mmHg
 - (79% of available oxygen at sea level)

- May have to increase supplemental O2 to maintain saturations
Effect of Altitude – Volume

• Gas within body compartments will expand
• Pneumothorax
 • Need functioning chest tube
• Bowel gas
 • Importance of good NG decompression
 • Large bore NG
 • Free drainage (not clamped)
 • Frequent aspiration
 • Particularly important in CDH patients
Chest Tubes and Pleurovacs
Chest Tubes and Pleurovacs

- NEVER clamp the chest tube – PLEASE!!
 - Puts patient at risk for tension pneumothorax
- Watch for fluctuation of water level with breathing
- Watch for bubbles
- Keep the pleurovac vertical
Replogle / Salem Sump

- Intended for decompression
- Double lumen tube
- Multiple distal holes
- Larger lumen → suction
- Smaller lumen → air vent
- Usually connected to continuous suction
- May require irrigation to keep clear
Blue Port / Antireflux Valve

- Blue port is intended as an air vent
- Needs to be kept free of moisture
- Flush blue port with air instead of saline
- Antireflux Valve → Good Idea? or Device of the Devil?
- Prevents decompression if the larger lumen becomes occluded
Feeding Tubes NOT Good for Decompression
Surgical Conditions

- Esophageal Atresia (with or without TEF)
- Congenital Diaphragmatic Hernia
- Gastroschisis
- Omphalocele
- Necrotizing Enterocolitis
- Bowel Atresia
- Intestinal Malrotation & Volvulus
Esophageal Atresia

- Upper esophagus ends in a blind-ending pouch rather than connect to the stomach
- Defect begins about 4th week of gestation
- Associated with polyhydramnios in 3rd trimester
- Associated with multiple other anomalies (VACTERL)
 - (Vertebral, Ano-rectal, Cardiac, TEF, Renal, Limb)
 - Cardiac anomalies are common
Esophageal Atresia

Fig. 43-3.—Congenital esophageal atresia. Distribution of 404 cases at Royal Children’s Hospital, Melbourne, 1948–1977.
Esophageal Atresia

With Tracheo-Esophageal Fistula

No fistula
Esophageal Atresia w/ TEF

- Risk is aspiration - gastric
- Insert Replogle tube
 - Upper pouch
 - Continuous suction if possible.... Or
 - Free drainage w/ frequent aspiration during transport
- Elevate HOB 30°
- AVOID intubation and positive pressure ventilation
 - Gastric distension / reflux
Pure Esophageal Atresia

- Risk is aspiration of saliva
- Insert Replogle tube
 - Upper pouch
 - Continuous suction if possible.... Or
 - Free drainage w/ frequent aspiration during transport
- Flat or even slight head down if necessary
- Be aware of potential for cardiac conditions (cyanosis, etc)
Congenital Diaphragmatic Hernia

- Potentially lethal
- Failure of diaphragm to fuse
- Usual defect is postero-lateral
- Intra-abdo organs herniate and take up space
- Resulting in:
 - Pulmonary hypoplasia (BOTH lungs)
 - Pulmonary hypertension
Congenital Diaphragmatic Hernia

- Intrathoracic portion of bowel rapidly becomes aerated and expands
- NG tube is essential
 - Decompression and aspiration of gastric contents and air
Congenital Diaphragmatic Hernia

- Most patients will require intubation / vent support
- Frequent ABG’s / monitoring
- Easily desaturate with cares → hypoxia
- Frequently require…
 - Paralytics / Sedation
 - Inotropes
 - Pulm vasodilators
- +/- ECMO (eg time is of essence)
Gastroschisis

- Abdominal wall defect to right of umbilicus
- No sac covering viscera
- Bowel edematous
- Associated with prematurity (60%) and IUGR
- 10-15% bowel atresia
- Other anomalies rare
- Young mothers
- Fluid losses a major issue
Gastroschisis

- Priorities at birth are…
- Protection of the bowel
 - Contamination
 - Evaporative fluid loses
 - Protection of vascular inflow
- Gastric decompression
 - Large bore OG tube
 - Contents will be thick
Gastroschisis

- Bowel bag
Gastroschisis

- Saran wrap (ie cling wrap)
Gastroschisis

- NeoHelp
- Velcro closure in front
- Drawstring around head/face
Gastroschisis

- Priorities for transport…
- Protection / support of the exposed viscera
 - Lay on RIGHT side with bowel in front… or
 - Support bowel on front of supine abdomen
 - Maintain sterility
 - Avoid kinking of the bowel
- Gastric decompression – frequent suctioning
- IV access for fluid resuscitation
Gastroschisis – Primary Closure
Gastroschisis - Silo
Omphalocele

- Central abdominal wall defect
- Membrane covers herniated viscera (usually liver and bowel)
- Umbilical cord inserts directly into the sac
- Associated anomalies >50%
 - GI, GU, CNS, Cardiac, Skel
 - Chromosomal
- Mortality 30-60%
Omphalocele

Large

Small
Omphalocele

- Large moist surface → evaporative heat loss
- If sac intact, contamination not an issue
- Transport priorities…
 - IV Access / fluids
 - NG decompression
 - Coverage of sac to prevent heat loss & desiccation
 - Xeroform / gauze
 - Moist saline / Saran wrap
 - Avoid pressure on sac
Omphalocele

- Timing of repair depends on size of the omphalocele
 - Small → primary repair
 - Large → topical mgmt till skin covered w/ delayed repair months to years later
Omphalocele

- If sac is ruptured → coverage with biologic mesh
- Prolonged topical care
- Supportive care w/ TPN often required
- Eventual repair months to years later
Necrotizing Enterocolitis

- Necrotizing infection of the bowel wall (SB or colon)
- Typically in premature infants (>90% of cases)
- Reported 7-20% of premature infants will get NEC – (25% mortality)
- Other risk factors include…
 - Congenital heart disease
 - Birth asphyxia
 - Exchange transfusion
 - Prolonged rupture of membranes
Necrotizing Enterocolitis

- Etiology not entirely clear
 - Mucosal damage, feeding?
 - Poor blood flow
 - Translocation of bacteria

- Progression of disease
 - Mucosal inflammation
 - Hemorrhagic/coagulative necrosis
 - Loss of mucosal integrity
 - Transmural necrosis
 - Perforation
Necrotizing Enterocolitis

- Symptoms can include…
 - Feeding intolerance
 - Bilious emesis/NG output
 - Bloody stool
 - Distension
 - Abdominal discoloration
 - Respiratory distress
 - Acidosis
 - Sepsis
 - Pneumatosis on KUB
Pneumatosis

- Bubbles or linear lucencies due to intramural air in wall of bowel
- Gas forming organisms
Necrotizing Enterocolitis

- Treatment..
 - NPO, Bowel rest
 - Broad Spectrum IV antibiotics
 - NG tube
 - IV fluids
 - Serial exams and xrays
Portal Vein Gas

- Sign of severe disease
- Relative (not absolute) indication for surgery
Pneumoperitoneum

- May require lateral view to be seen
- Absolute indication for operative intervention
Necrotizing Enterocolitis

- Surgical intervention
 - Resection of grossly dead tissue
 - +/- stoma
 - Possible “2nd Look” in 48 to 72 hrs
 - Possible abdominal wound vac
Necrotizing Enterocolitis

- These patients need to be in a center where surgery can intervene ASAP if needed
- Patients may be extremely ill
- Transportation priorities
 - IV access
 - NG decompression
 - Ventilator support if intubated
 - +/- pressors
 - Bring all xrays
Intestinal Atresia

- Complete obstruction of intestinal lumen
- Vascular accidents in-utero
- Damaged segment shrivels and fibroses → obstruction
- Presentation...
 - Bilious emesis
 - Distension
 - Non-passage of stool

Source: Rudolph CD, Rudolph AM, Lister GE, First LR, Gershon AA; Rudolph’s Pediatrics, 22nd Edition: www.accesspediatrics.com
Copyright © The McGraw-Hill Companies, Inc. All rights reserved.
Intestinal Atresia

- Swallowed air → progressive distension
- Dilated loops on KUB
- Air/fluid levels
- Risk of aspiration
Intestinal Atresia

- Contrast enema → Micro-colon
- Colon growth depends on passage of enteral content
- Confirms diagnosis of intestinal obstruction that will require surgical exploration
- Exact etiology won’t be clear until surgery
Intestinal Atresia

- Initial management…
- NPO
- NG decompression
- IV access
- IV fluids
- Transfer for surgical management
Intestinal Atresia
Intestinal Malrotation

- Congenital abnormality in fixation of the bowel
- Allows the bowel to twist
- Can result in acute bowel ischemia and loss of entire small bowel and 2/3’s of the colon
Intestinal Malrotation
Intestinal Malrotation
Intestinal Malrotation

- Clockwise twist → proximal obstruction
- Bilious emesis
- Restricts vascular inflow → ischemia
- +/- bloody stool
- Eventual distension / acidosis
- Cardiovascular collapse if not treated promptly
Intestinal Malrotation

- UGI – diagnostic study of choice
- Will show abnormal path of duodenum
- Abnormal location of Ligament of Treitz
Intestinal Malrotation

- UGI – diagnostic study of choice
- Will show abnormal path of duodenum
- Abnormal location of Ligament of Treitz
- Bird Beak if volvulus
Treatment

- Emergent exploration
- Counter-clockwise untwisting of the bowel
Treatment

- Emergent exploration
- Counter-clockwise untwisting of the bowel
- Division of Ladd’s Bands
Treatment

- Emergent exploration
- Counter-clockwise untwisting of the bowel
- Division of Ladd’s Bands
- Opening of the mesentery → separation of duodenum and colon
Treatment

- Emergent exploration
- Counter-clockwise untwisting of the bowel
- Division of Ladd’s Bands
- Opening of the mesentery → separation of duodenum and colon
- Return the bowel in a neutral non-rotated orientation
Intestinal Malrotation
Intestinal Malrotation
Intestinal Malrotation
Intestinal Malrotation
Intestinal Malrotation

- Transport priorities in suspected malrotation
- NPO
- NG decompression
- IV access / fluids
- Go, Go, Go ASAP
- Time is of the essence
- Clock is ticking…!
Summary

- Surgical neonates deserve prompt transport to a center with pediatric surgeons
- Stabilization prior to transport is preferable
- Make sure patient has…
 - Good IV access
 - Secure airway if any respiratory concerns
 - Functioning NG decompression
- Protect the bowel / viscera in pts with abdo wall defects
- Be aware of the effect of altitude on gas filled spaces
Summary

- Be thankful we don’t live in 1923 (This could be you)

- Most importantly....

- BE SAFE OUT THERE !!!!!!
Questions?